Hamilton decompositions of graphs with primitive complements

نویسندگان

  • Sibel Ozkan
  • Christopher A. Rodger
چکیده

A k-factor of a graph is a k-regular spanning subgraph. A Hamilton cycle is a connected 2-factor. A graph G is said to be primitive if it contains no k-factor with 1 ≤ k < ∆(G). A Hamilton decomposition of a graph G is a partition of the edges of G into sets, each of which induces a Hamilton cycle. In this paper, by using the amalgamation technique, we find necessary and sufficient conditions for the existence of a 2x-regular graph G on n vertices which: 1. has a Hamilton decomposition, and 2. has a complement in Kn that is primitive. This extends the conditions studied by Hoffman, Rodger, and Rosa [D.G. Hoffman, C.A. Rodger, A. Rosa, Maximal sets of 2-factors and Hamiltonian cycles, J. Combin. Theory Ser. B 57 (1) (1993) 69–76] who considered maximal sets of Hamilton cycles and 2-factors. It also sheds light on construction approaches to the Hamilton–Waterloo problem. © 2008 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamilton decompositions of balanced complete multipartite graphs with primitive leaves

A graph G is said to be primitive if it contains no proper factors. In this paper, by using the amalgamation technique, we find sufficient conditions for the existence of a d-regular graph G on n vertices which: 1. has a Hamilton decomposition, and 2. has a complement in K p m that is primitive. These general results are then used to consider the bounds onmwhen p and d are fixed. The case p = 6...

متن کامل

D-Spectrum and D-Energy of Complements of Iterated Line Graphs of Regular Graphs

The D-eigenvalues {µ1,…,µp} of a graph G are the eigenvalues of its distance matrix D and form its D-spectrum. The D-energy, ED(G) of G is given by ED (G) =∑i=1p |µi|. Two non cospectral graphs with respect to D are said to be D-equi energetic if they have the same D-energy. In this paper we show that if G is an r-regular graph on p vertices with 2r ≤ p - 1, then the complements of iterated lin...

متن کامل

Hamilton decompositions of line graphs of perfectly 1-factorisable graphs of even degree

The proof of the following theorem is the main result of this paper: If G is a 2k-regular graph that has a perfect 1-factorisation, then the line graph, L(G), of G is Hamilton decomposable. Consideration is given to Hamilton decompositions of L(K 2k ? F).

متن کامل

Hamilton decompositions of line graphs of some bipartite graphs

Some bipartite Hamilton decomposable graphs that are regular of degree δ ≡ 2 (mod 4) are shown to have Hamilton decomposable line graphs. One consequence is that every bipartite Hamilton decomposable graph G with connectivity κ(G) = 2 has a Hamilton decomposable line graph L(G).

متن کامل

Paley graphs have Hamilton decompositions

We prove that all Paley graphs can be decomposed into Hamilton cycles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 309  شماره 

صفحات  -

تاریخ انتشار 2009